Szimmetriák a természetben és a művészetekben

  • Értesítő a rovat cikkeiről

Az Adó Online népszerű adótörténeti sorozatának szerzője, dr. Juhász István adótörténész egy újabb oldaláról mutatkozik be 2017 év utolsó írásában. A cikk nem adózási tartalmú, de kapcsolódik egy korábbi írásához. Ezzel kíván a szerző és a Kiadó is eredményekben gazdag Boldog Új Évet az Adó Online minden Olvasójának!

A szimmetria különös esztétikai örömöt okoz az emberben. Gyakran már ránézésre látjuk, hogy egy képen ismétlődő alakzatok jelennek meg.

Hányféleképpen lehet ismétlődő alakzatokkal lefedni egy épület homlokzatát, vagy egy tapétát milyen módon lehet megtervezni?

Mimar Szinánról, az iszlám világ legnagyobb építészéről szóló írásunkban szóltunk az iszlám mozaikok változatosságáról. Az iszlám építészet remekei különösen bővelkednek szimmetrikus alakzatokban.

Szimmetriák a természetben

Az élő és élettelen világban is számos példát találhatunk a szimmetriára. Maga az ember is szimmetriát mutat, de ezen túl is szinte általános az állatvilágban is a szimmetria, a növények levelei, virágai is sokfajta ismétlődést mutatnak, az ezerlábú a hosszanti szimmetria mellett az egyes testszelvényeknél is mutat ismétlődéseket, szintén szimmetriát mutatnak a hópelyhek, a kristályok, de még a galaxisok is.

A részletes ismertetések helyett ezekre egy összefoglaló ábrát mutatunk be.

bevezető kép, szimmetria

Mit is értsünk szimmetria alatt?

Két alakzatot (e cikkben) egybevágónak tekintünk, ha azok mozgatás segítségével, egymással fedésbe hozhatóak. Mozgatás alatt az eltolást (csúsztatást), az elforgatást és a tükrözést, illetve ezek tetszőleges kombinációját értjük (ezeket matematikusnyelven transzformációknak nevezzük). Az eltolás és a tükrözés egymásutánjára a csúsztatva tükrözés elnevezést is szokásos használni.

A szimmetrikus alakzatok értelmezhetők akár egy egyenesen is (1 dimenzió), egy sávban (szalag, fríz; 1,5 dimenzió), a síkban (2 dimenzió), egy hengeren (csavarszimmetria), a térben, de akár többdimenziós terekben is (ennek matematikai aspektusaitól most eltekintünk).

A továbbiakban csak olyan szimmetriákra szorítkozunk, amelyekben a sík, vagy annak meghatározott része egybevágó alakzatokkal egyszeresen, hézagmentesen lefedhető. Ilyen korlátozott tartomány lehet egy kör, vagy egy olyan sáv, amelyet két párhuzamos egyenes határol.

Még egy fogalommal meg kell ismerkednünk annak érdekében, hogy a továbbiak érthetőek legyenek. Generátorcella alatt értjük azt a legkisebb területű alakzatot, amelynek transzformációival a sík vagy annak meghatározott részlete az előzőek szerint kitölthető, lefedhető.

A sík szimmetrikus kitöltései számos művészeti és kevésbé művészeti ágban megjelennek, így az építészetben, a lakások belső díszítéseiben (parkettázás, csempézés tapétázás stb.), de különböző textiltermékek (függönyök, szőnyegek, ágyneműk), vagy ruhaneműk díszítéseinél is. A sávos kitöltésre jó példa lehet egy épület oromdísze, a tapétáknál, csempézésnél alkalmazott szegélyminták, bordűrök, de a szőnyegek és egyéb ruhaneműk szegélyeinél is gyakran találkozhatunk a sávos kitöltést alkalmazó mintázatokkal.

Az ismétlődő mintázatokon belüli felosztással, színezéssel a mintázatok száma végtelen, ennek már csak az alkotó képzelet szab határt.

A magyar népművészetben a kékfestő mintázatok és a keresztszemes hímzések is a sík szimmetrikus kitöltésire adnak példákat.

Az építészet mellett a festészetben, grafikai alkotásokban találkozhatunk gyakran a szimmetrikus lefedésekkel. Ennek legnagyobb mestere a holland Maurits Cornelis Escher (1898-1972) volt (röviden: MCE).

Az ismétlődő mintázatok típusaira a kristálytani – krisztallográfiai – jelöléseket alkalmazzuk a következőkben (van más jelölésrendszer is, de erre nem térünk ki).

Természetesen ez az írás nem képes bemutatni a szimmetriák elméletét a maga teljességében, de nem is ez volt a célunk.

A kör szimmetrikus kitöltései

A körszimmetriára nagyon jó példa a kerek virágalakzatok szimmetriája, vagy a középkori katedrálisépítésben az úgynevezett rózsaablakok. Alapvetően kétfajta szimmetriát különböztethetünk meg, attól függően, hogy az ismétlődő (egybevágó) körcikkek esetében a szomszédos körcikkek egymás tükörképei, vagy elforgatások révén jön létre a generátorcellából a másolatok sora. Attól függően, hogy a kört hány körcikkre osztjuk fel, már önmagában is igen sokféle szimmetrikus alakzatot hozhatunk létre. Nem nehéz belátni, hogy a tükrözéses módszer csak páros számú körcikkre lehet értelmezni, az elforgatásos módszer esetén a körcikkek száma bármennyi lehet.

Az alábbi két ábra közül az elsőn a tükrözéses szimmetriára mutatunk be példát, a másodikon az elforgatásos szimmetriára.

A Notre Dame rózsaablaka

A párizsi Notre Dame rózsaablakának generátorcellája a kör 24-ed része (tükrözés), a 2. képen látható rózsaablaknál viszont csak egyhatoda (elforgatás)

A sávos kitöltés

Egy sáv ismétlődő alakzatokkal való kitöltésének összesen hétfajta módszere lehetséges (matematikai módszerekkel bizonyítható a hetes szám, ezt – természetesen – most mellőzzük):

 

transzformáció

krisztallográfiai jelölés

1.

az ismétlés eltolással történik

t

2.

eltolás, vízszintes tengely menti tükrözés, eltolás, tükrözés …

tg

3.

függőleges tengely szerinti tükrözések egymásutánja

tm

4.

egyidejűleg alkalmazott vízszintes tengely menti tükrözés és eltolás

mt

5.

180°-os elforgatások egymásutánjai

t2

6.

függőleges tengely szerinti tükrözés, majd 180°-os elforgatás, illetve ezek ismétlődései

t2mg

7.

váltakozva vízszintes és függőleges tengely szerinti tükrözések

t2mm

A következő két ábrán a t2, tg, tm és t2mg szerinti kitöltésekre mutatunk be példákat:

keresztszemes hímzésminta

A keresztszemes hímzésminta két szélén a t2 szerinti mintázat, középső sávjában a tg szerinti mintázat látható

 

Alhambra, t2mg

A Granada melletti Alhambra e mozaikjának felső szélén tm szerinti mintázat található, ha a színeket nem különböztetjük meg, akkor t2mg

 

A sík kitöltései

A sík kitöltésére összesen 17-féle, egymástól különböző módszer alkalmazható (ennek matematikai bizonyítását szintén mellőzzük, de érdemes megjegyezni, hogy egyik bizonyítását a magyar Pólya György tette közzé 1924-ben):

 

transzformáció

krisztallográfiai jelölés

1.

két nem párhuzamos eltolás

p1

2.

két párhuzamos csúsztatva tükrözés

pg

3.

két párhuzamos tükrözés (két tükrözés és egy eltolás)

pm

4.

egy tükrözés és egy párhuzamos csúsztatva tükrözés

cm

5.

180°-os forgatások két irányban

p2

6.

egy tükrözés és egy csúsztatva tükrözés (tükrözés és 180°-os forgatás)

p2mg

7.

két merőleges csúsztatva tükrözés (csúsztatva forgatás és 180°-os forgatás

p2gg

8.

tükrözés egy téglalap négy oldalára

p2mm

9.

merőleges tükrözések és merőleges csúsztatva tükrözések (két merőleges tükrözés és egy 180°-os forgatás)

c2mm

10.

két 120°-os forgatás

p3

11.

tükrözések egy egyenlő oldalú háromszög oldalaira

p3m1

12.

egy tükrözés és egy 120°-os forgatás

p31m

13.

egy 180°-os forgatás és egy 90°-os forgatás

p4

14.

egy tükrözés és két 180°-os elforgatás

p4gm

15.

tükrözés egy 45°-45°-90°-os háromszög oldalaira

p4mm

16.

egy 180°-os elforgatás és egy 120°-os elforgatás

p6

17.

tükrözések egy 30°-60°-90°-os háromszög oldalaira

p6mm

Lássunk az előzőekre néhány példát!

Granada, Alhambra, p3 és p4mm

Granada, Alhambra, p3 és p4mm mintázat

 

p1 és p2 mintázat

p1 és p2 mintázat (MCE)

 

p3 és p3m1 mintázat

p3 és p3m1 mintázat (MCE)

 

p4gm mintázat

p4gm mintázat (egy angyal fele és egy denevér fele adja a generátorcellát) és p6 mintázat (MCE)

 

p6 mintázat

p6 mintázat (japán minta)

Irodalom:

Coxeter, H.S.M.: A geometriák alapjai (Műszaki Könyvkiadó, Budapest, 1973)

Escher, M.C. grafikái

Hargittai Magdolna – Hargittai István: Képes szimmetria (Galenus, Budapest, 2005)

Sautoy, Marcus du: Finding Moonshine: A Mathematician's Journey Through Symmetry (HarperCollins Publishers Ltd., London, 2009)

Weyl, Hermann: Szimmetria (Gondolat, Budapest, 1982)

függelék1

függelék2

függelék3

 

 

 

 

 

 

 

  • Értesítő a rovat cikkeiről
Az irányítópulton gyorsan elérhetőek az új funkciók Irányítópult

Az ado.hu új funkciói itt elérhetőek az Ön számára, a megjelenéshez kérjük regisztráljon vagy jelentkezzen be!

Újdonságok

  • költségvetés

    Az Országgyűlés pénteken elfogadta a jövő évi költségvetésről szóló törvényt.

  • forint_pénz

    A teljes munkaidőben alkalmazásban állók átlagos bruttó keresete májusban 327 500 forint volt, 10,9 százalékkal magasabb, mint egy évvel korábban - jelentette pénteken a Központi Statisztikai Hivatal (KSH).

  • vám

    2018. január elsejével új vámtörvény lépett életbe, vámigazgatási ügyekben ettől kezdve kizárólag a vámjogszabályokat lehet alkalmazni. A leginkább kézzelfogható változás, hogy vámigazgatási ügyben – amennyiben az ügyfél nem kíván személyesen eljárni – immár kizárólag vámjogi képviselő járhat el. Bár a szabályozás nem régi, ennek ellenére indokolttá vált a módosítása, amely szerint a vámjogi képviselői feladat ellátásába bevonható harmadik fél is.

  • autópiac

    A második negyedévében újabb csúcsra ért a használtautó-piac Magyarországon: 201 ezer használt személyautó cserélt gazdát, 17 százalékkal több, mint egy évvel korábban, és az előző negyedévhez is jelentős, 16 százalékos volt növekedés - közölte a JóAutók.hu.

  • top 100

    Március végén átlépte a 20 billió dollárt a világ száz legértékesebb vállalatának piaci tőkeértéke. A mezőnyt az USA és a technológiai szektor dominálja. Az InfoTandem infografikája.